

Mastery Mathematics

At Huyton with Roby, all pupils will experience the 'mastery approach' to learning maths, using the underlying principles of the Maths No Problem mastery programme. We want pupils to build a deeper understanding of concepts that will enable them to apply their learning in different situations.

Children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This progression policy works alongside our calculation policy to outline the different strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

By following the Maths No Problem scheme of work, all children will move broadly through the content at the same pace. They will be given time to think deeply about the maths which will encourage differentiation through strategies and understanding rather than acceleration.

Counting

Foundation

Missing numbers Ordering 1-5 Matching amounts Comparing numbers

Year 1

One or two more and less than numbers to 40 Comparing and ordering numbers

11 eleven

13 thirteen

19 nineteen

Let's compare 5, 6 and 7.

1 less 1 more

Counting

Year 1

Recap counting backwards and forwards within 10

In Focus

7	3	4	2	6	8	9	10	1

Arrange the numbers in order. What is the missing number?

Let's Learn

(1)

3

Year 1
Let's Learn

Continuing with practical resources but moving onto pictorial and abstract much more quickly

Number bonds
 Year 1

Add by Using Number Bonds

Foundation

Number Bond

Number bonds to 10 using practical
resources before introducing + - = signs

5+5

$6+4 \quad 7+3$

$8+2$

1

port
5
whole
There are 5 swans altogether.

$2+3$ equals 5 .

We read = as equals.

We read it as two plus three equals five.

Using part-part-whole to show different ways of making the same number

Adding Foundation

Composition of numbers Making 5
Breaking 5
Adding to 10
$\therefore \quad$ Counting on
$\begin{array}{ll}\bullet+\bullet & \ddots \\ \bullet+\bullet & \ddots \\ \ddots & \bullet \\ \ddots & \ddots\end{array}$
Counting on

$1+4$	3
$2+3$	4
$2+2$	5
$3+1$	4
$2+1$	5

4
5
4
5

Adding to 10 with concrete or pictorial resources, using the symbols and number formation

Add.

Year 1

Put 5 cupcakes on two plates.

(a)

BOHO OORMBA
(b)

(c)

How many eggs are there in total?

$2+5=7$

This is a number bond

Subtracting

Year 1

Foundation

Subtracting by crossing out

 At first, there are
 7 ladybirds.

Then, 2 ladybirds fly away.

Let's Learn

Subtract by Crossing Out

- is read as minus. It means to subtract.

$7-2=5$
5 ladybirds are left.
$7-2=5$ is a subtraction equation.
We read it as seven minus two equals five.
路

Subtracting

Foundation

Part-part-whole model:

Children will use the part-part-whole diagram to add and subtract numbers.

Looking at part-part-whole method for subtraction

Mear 1

 Looking at part-part-whole method for subtraction and recognising how it links to addition.
In Focus

How many boys do not wear glasses?

$$
\begin{aligned}
& \text { There are } 4 \text { boys. } \\
& 3 \text { boys wear glasses. }
\end{aligned}
$$

Let's Learn

Subtract by Using Number Bonds
(1)

Subtracting

Year 1

Foundation

Number lines:

Children will be able to use a number line to count, as well as using it to take away or add one.
This will be for numbers up to 20.

Subtracting

Year 1

In Focus

Make subtraction stories.

There are 7 rabbits. 1 rabbit is black. The rest of the rabbits are white.

Subtraction
 Year 1

Let's Learn

In Focus

How many of the children are girls?

How many apples are there altogether?

$$
5+2=7 \text { or } 2+5=7
$$

How many apples are red?
$7-2=5$

whole

How many apples are green?
Solving picture problems

Family facts

Subtraction

Year 1

Subtract by counting back.

11	12	13	14	15	16	17	18	19	20

(a) $15-2=$ \square (b) $17-3=$

Children learn to subtraet a ones number from the ones by partitioning two-digit numbers into tens and ones

Subtract Ones

1) $16-4=$?

$16-4=12$
There are 12 flowers left.

Subtraction

 Year 1

Subtract from 10

$$
14-8=?
$$

$14-8=6$
Sam has 6 doughnuts left.

Year 2

Adding

 Year 2Adding numbers to 100

$25+3=28$
Recapping methods taught in Year
1

2

Adding - no renaming Year 2

Method 3 Use to odd.
 Step 1 Add the ones.

Step 2 Add the tens.
1 ten +2 tens $=3$ tens

$19+20=39$
E

Adding - with renaming Year 2

 Renaming means carrying

 Renaming means carrying}

[^0]
Subtracting

 Year 2 subrocting mumberswithin 100
Subtract 3 from 28.

Recapping methods taught in Year 1

Subtracting - no renaming

NQ?

Subtracting numbers within 100

$36-20=16$

Beginning practically with dienes before moving onto column subtraction Number bond method is taught alongside both methods

Subtracting - with regrouping Year 2

Step 1 Regroup 1 ten into 10 ones.
Subtract the ones. 13 ones -5 ones $=8$ ones

Step 2 Subtract the tens.

$23-5=18$

tens	ones
12	13
-	3
1	5
	8

Multiplication

In Focus

How many cupcakes are there altogether?

Let's Learn

$$
\begin{aligned}
3+3+3+3 & =12 \\
4 \text { threes } & =12 \\
4 \text { groups of } 3 & =12 \\
4 \times 3 & =12
\end{aligned}
$$

There are 12 cupcakes altogether.

Language and repeated addition

$$
\begin{aligned}
& 4 \times 3=12 \text { is read as } \\
& 4 \text { times } 3 \text { equals } 12 .
\end{aligned}
$$

Equal groups
times 3 equals $12 . \quad$ Each group has 3 cupcakes.
$1 \times 5=5$

$$
2 \times 5=10
$$

$3 \times 5=15$

Year 2

2,5 and 10 times tables

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

Number lines and hundred squares

Emma gets 10 bags of chocolate.
$20 \div 2=10$ is a division equation.
$20+2=10$ is read as twenty divided by two equals ten

$$
18+2=9
$$

2,5 and 10 times tables

Put into groups of 5 .
There are \square groups.
ut into 5 equal groups
There are \square \& \rightarrow in each group.
\square
Commutative and inverse calculations
$10 \div 2=5$
$5 \times 2=10-5=2$
$2 \times 5=10-20 \mathrm{~mm}$

Lower Key

Stage 2

Recapping methods taught in Year 1 and 2

Adding numbers to 1000

6 blue chairs

12 red chairs

How many chairs are there altogether?

| We can write a family of addition and subtraction facts.
 $6+12=18$ $18-12=6$
 $12+6=18$ $18-6=12$ |
| :--- | :--- |

$213+4=217$

Adding ones, tens and hundreds

$$
213+4=217
$$

There were 217 books in the bookcase.

Adding
Children are expected to Year 4

Find the sum of 2034 and 9.

Why is the sum 1 less?
Learning mental strategies to add
Find the sum of 98 and 4142 by adding mentally.

$$
\begin{aligned}
98+4142 & =100+4140 \\
& =4240
\end{aligned}
$$

Adding - no renaming

Year 3

$432+521=953$
Beginning practically with dienes before moving onto column addition
Number bond method is taught alongside both methods

Adding - no renaming

Let's Learn
saved £2314.
saved $£ 4240$ more than

Find the sum of 2314 and 4240 .

20003000	100	100	10	1	1
	100		1	1	
10003	1000	100	100	10	10
1000	3000		10	10	

```
Step 1 Add the ones.
4 ones +0 ones \(=4\) ones
Step 2 Add the tens.
1 tens +4 tens \(=5\) tens
Step 3 Add the hundreds.
3 hundreds +2 hundreds \(=5\) hundreds
Add the thousands.
2 thousands +4 thousands \(=6\) thousands

\section*{Adding - with renaming \\ 1}

\section*{Year 3}

Expected to solve a larger number of abstract calculatons

Add the tens.
3 tens +9 tens \(=12\) tens
Regroup the tens.
12 tens \(=1\) hundred +2 tens


3

(b)


462 and 248


Secure understanding of place value to 1000


Recapping methods taught in Year 3, as well as applying it to measure problems straight away (e.g., money)

\section*{Subtracting} Year 3

\section*{Subtracting numbers within 1000}

Method \(1 \quad\) Count back from 58.


Method 2 Subtract ones.


\section*{Year 4}

Subtracting numbers within 10,000
Find the difference between 358 and 128.

\(358-128=\)
When we subtract numbers, we get the difference.

Use base-ten blocks


The difference between 358 and 128 is 230 .

\section*{Subtracting - no regrouping Year 3 \\ Subtract the tems.}

Subtract the ones.
5 ones -3 ones \(=2\) ones


\(975-723=252\)
There mere 252 beods left in the jar

Beginning practically with dienes before moving onto column subtraction
Number bond method is taught alongside both methods


\section*{Subtracting - with regrouping Year 3 \\ Subtract the ones. \\ 11 ones -6 ones \(=5\) ones}


Step 2 Subtract the tens.
2 tens -2 tens \(=0\) tens


Step 3 Subtract the hundreds.


Beginning practically with dienes before moving onto column subtraction

Number bond method is taught alongside both methods

\section*{Subtracting - with regrouping Year 4 \\ In Focus \\ Let's Learn \\ \(£ 5280\) \\ After Ruby spent \(£ 3169\), how much was left?}


Children are encouraged to use the inverse calculation to check their answers


\section*{Subtracting Year 4 \& Year 5}

Learning mental strategies to subtract
\(4021-3987=\)


\section*{Multiplication}

Equal groups
1 group of 3
\(1 \times 3=3\)

2 groups of 3
\[
2 \times 3=6
\]


3 groups of 3
\(3 \times 3=9\)

Count in threes. Number lines and hundred squares


\section*{Year 3 \\ 3,4 and 8 times tables}

Language and repeated addition


\section*{Multiplication Year 4 \\ 6, 7, 9, 11 and 12 times tables}


\section*{Division}

\(12 \div 4=3\)
3 plates are needed.


We can make a fomily of multiplication and division equations.
Family of commutative and inverse calculations

3,4 and 8 times tables

\section*{Year 3}


\section*{Division}
\[
36 \div 9=?
\]

\section*{'equal groups'
lacing into 9 equal groups}

\(36 \div 9=4\)

Each group has 4 strawberries.

Placing in groups of 9

\[
36 \div 9=4
\]

There are 4 groups.

\section*{Year 4}
\(6,7,9,11\) and 12 times tables

\section*{There were 11 balloons.}

\(11 \div 2=5\) remainder 1
The quotient is 5 and the remainder is 1 .
Each friend got 5 balloons.
There was 1 balloon left over.

Children are introduced to the concept of remainders

\section*{Further multiplication}
\(\left[\begin{array}{cc}\infty \\ 0\end{array}\right]\left[\begin{array}{ll}\infty \\ 0 & 0\end{array}\right]\left[\begin{array}{l}\infty \\ 0\end{array}\right]\)

\section*{Multiply 2 ones by 4} \(2 \times 4=8\)


Multiply 2 tens by 4 \(20 \times 4=80\)

There are 80 oranges in the 4 boxes altogether
2. Number bond method
4. Short multiplication

\(23 \times 8=184\)
The product of 23 and 8 is 184 .


3 ones \(\times 8=24\) ones 24 ones \(=2\) tens +4 ones

\section*{Further multiplication}

\section*{Year 4}

Recap: bridged and short multiplication


\section*{New: multiplying 3 numbers}
\(2 \times 5 \times 6 \quad 2 \times 5 \times 6=10 \times 6=60\)


Recap multiplying by a multiple of 10

\section*{Further multiplication}

\begin{tabular}{|c|c|c|c|}
\hline & & w: multiplying by multipl & es of 100 \\
\hline & \(7 \times 300=\) & & \\
\hline & Method 1 & Method 2 & Method 3 \\
\hline Recap: & 300 & \(7 \times 3=21\) & \(7 \times 300=7 \times 3 \times 100\) \\
\hline Bridged and short & 300 & \(7 \times 3\) hundreds \(=21\) hundreds & \(=7 \times 3 \times 100\) \\
\hline  & 300 & \(7 \times 300=2100\) & \(=21 \times 100\) \\
\hline multiplication & 300 & & \(=21\) hundreds \\
\hline & 300 & 21 hundreds \(=2100\) & \(=2100\) \\
\hline & 300 & 21 hundreds \(=2100\) & + \\
\hline & + 300 & & \\
\hline & 2100 & & - \\
\hline
\end{tabular}

Which method is best?

\section*{Further division}
1. Number bond method

2. Long division method


3. Move onto problem solving involving these methods and bar models

\section*{Further division}

\section*{Year 4}

\(4 \div 4=1\)
\(40 \div 4=\) \(\square\)
\(\begin{array}{llll}10 & 10 & 10 & 10\end{array}\)
\(40 \div 4=10\)
\(400 \div 4=\)
1001100100100
\(400 \div 4=100\)

Method 1


\[
408 \div 4=102
\]

\section*{Further division}

\section*{Year 4}

Once confident with the partitioning and long division methods,
remainders are introduced using these methods


It is not possible to put 75 children into 6 equal groups.

Move onto problem solving involving these methods and bar models

\section*{Upper Key}

Stage 2

\section*{Adding Year 5}

\begin{tabular}{|c|l|l|r|}
\hline & \multicolumn{1}{|c|}{ A } & \multicolumn{1}{|c|}{ B } & \multicolumn{1}{c|}{ C } \\
\hline \(\mathbf{1}\) & Date & Trip & Fare \\
\hline \(\mathbf{2}\) & 13 September & Airport to Hotel & 150000 \\
\hline \(\mathbf{3}\) & 14 September & Hotel to Office & 40000 \\
\hline \(\mathbf{4}\) & & Office to Hatel & 45000 \\
\hline \(\mathbf{5}\) & \(\mathbf{1 5}\) September & Hotel to Office & 43000 \\
\hline \(\mathbf{6}\) & & Office to Hotel & 42000 \\
\hline \(\mathbf{7}\) & & Hotel to Restaurant & 25000 \\
\hline \(\mathbf{8}\) & & Restaurant to Hotel & 21000 \\
\hline \(\mathbf{9}\) & 16 September & Hotel to Office & 46000 \\
\hline \(\mathbf{1 0}\) & & Office to Airport & 150000 \\
\hline \(\mathbf{1 1}\) & & & \\
\hline \(\mathbf{1 2}\) & & Total for Toxi Fare & 562000 \\
\hline
\end{tabular}

\section*{Rounding to add by estimate}


Adding key facts to simplify


\section*{Adding - with renaming} Year 5

\begin{tabular}{r}
16000 \\
\(+\quad 17000\) \\
\hline
\end{tabular}

Place value counters to visually support column addition


\section*{Subtracting}

\section*{Year 5}

Subtracting by counting back


\footnotetext{
546 203, 446 203, 346 203, 246203
}

\title{
Subtracting - with regrouping Year 5 \\ Place value counters to visually \\ Regrouping in
} support column subtraction
\[
\begin{array}{r}
80123-79654= \\
80123 \\
-\quad 79654
\end{array}
\]




Take 1 hundred from 11 hundreds to make 12 tens.

Take 1 ten from 12 tens to make 13 ones.

Check by estimating

\section*{Multiplication}

\section*{Finding multiples}
\[
3 \times 6=18
\]
\(1 \times 6=6\)
\[
2 \times 6=12
\]

Prime numbers
\begin{tabular}{|c|l|}
\hline number & \multicolumn{1}{|c|}{ factors } \\
\hline 5 & 1 and 5 \\
\hline 7 & 1 and 7 \\
\hline 4 & 1,2 and 4 \\
\hline 9 & 1,3 and 9 \\
\hline 6 & \(1,2,3\) and 6 \\
\hline 8 & \(1,2,4\) and 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 & 17 & 18 \\
\hline 19 & 20 & 21 & 22 & 23 & 24 \\
\hline
\end{tabular}

\section*{Finding factors}


18

Common factors
Find the common factors of 48 and 64
\begin{tabular}{ll}
\(48=(1) \times 48\) & \(64=(1) \times 64\) \\
\(48=(2) \times 24\) & \(64=(2) \times 32\) \\
\(48=3 \times 16\) & \(64=(16) \times(8) \times 8\) \\
\(48=(4) \times 12\) & \(64=(8)\) \\
\(48=6 \times(8)\) \\
The common factors of 48 and 64 are \(1,2,4,8\) and 16.
\end{tabular}

\(9=3 \times 3=3^{2}\)

Square and cube numbers

\[
27=3 \times 3 \times 3=3^{3}
\]

\section*{Multiplication} Year 5
\begin{tabular}{|c|c|c|}
\hline \(12 \times 10\) & \(12 \times 100\) & \(12 \times 1000\) \\
\hline & \[
100100
\] & \[
10001000
\] \\
\hline 1010 & \[
100100
\] & \[
10001000
\] \\
\hline 1010 & \[
00100
\] & \[
10001000
\] \\
\hline 1010 & \[
0100
\] & \[
10001000
\] \\
\hline \[
10 \quad 10
\] & 0100 & \[
10001000
\] \\
\hline 1010 & \[
100100
\] & \[
10001000
\] \\
\hline \[
\begin{aligned}
12 \times 10 & =12 \times 1 \mathrm{ten} \\
& =12 \text { tens }
\end{aligned}
\] & \[
\begin{aligned}
12 \times 100 & =12 \times 1 \text { hundred } \\
& =12 \text { hundreds }
\end{aligned}
\] & \[
\begin{aligned}
12 \times 1000 & =\frac{12 \times 1}{} \text { thousand } \\
& =12 \text { thousands }
\end{aligned}
\] \\
\hline 120 & 1200 & 12000 \\
\hline  &  & \\
\hline  &  & N0 \\
\hline
\end{tabular}

\section*{Further multiplication}

\section*{Year 5}
\begin{tabular}{r}
2718 \\
\(\times \quad 4\) \\
\hline 32 \\
40 \\
2800 \\
+8000 \\
\hline 10872
\end{tabular}

\begin{tabular}{r}
23 \\
2718 \\
\(\times \quad 4\) \\
\hline 872 \\
\hline
\end{tabular}
\begin{tabular}{r}
23 \\
2718 \\
\(\times \quad 4\) \\
\hline 10872 \\
\hline
\end{tabular}

Recap:
Bridged and short multiplication but with larger numbers

Place value counters are initially used alongside the column method to support pictorially
\(2718 \times 4=10872\)


\section*{Further division Year 5}



\section*{Further division \\ Year 5}


\section*{Four Operations}

\section*{Year 6}

wrote this expression:
\(2 \times 3 \times 6 \div 4-5-1\)
\(2 \times 3 \times 6 \div 4-5-1\)
\(=6 \times 6 \div 4-5-1\)
\(=36 \div 4-5-1\)
\(=9-5-1\)
\(=3\)
\(2 \times 3 \times 6 \div 4-5-1=3\)

For \(\times\) and \(\div\), calculate from left to right.

\section*{Subtract from} left to right.

Can you make an expression that has the value of 4 ? How about the values of 5 or 6 ?
made a different expression that has the value of 3 .
\[
(1+2) \div 3 \times 4+5-6
\]

Step 1: Perform the calculation in the brackets first.
Step 2: Multiply or divide whichever comes first.
Step 3: Add or subtract whichever comes first.
\((1+2) \div 3 \times 4+5-6=3\)
\[
\begin{aligned}
& 1+2=3 \\
& 3+3=1 \\
& 1 \times 4=4 \\
& 4+5=9 \\
& 9-6=3
\end{aligned}
\]

\section*{Exploring the use of the four operations within expressions}

\section*{Using a mixture of} the four operations confidently

\section*{Multiplication}

\section*{Year 6}

(1) \(12 \times 568=\square\)
```

100 100 100 100 100
10
(1) (1) 1) 1) 1) (1) 1) 1

```

100 (100) 100 (100) \(100 \times 10\) (1000) (1000) (1000) (1000)
\(101010101010 \xrightarrow{\times 10}\) (100)(100)(100)(100) \(100(100)\)
\(\begin{array}{lllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} \xrightarrow{\times 10} 10 \quad 10\)
\[
\begin{aligned}
& 10 \times 568=5680 \\
& 100 \text { (100) } 1001001100 \times 2 \xrightarrow{\times 2} \begin{array}{l}
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
\hline
\end{array} \\
& \begin{array}{lllll}
10 & 10 & 10 & 10 & 10 \\
10 & \times 2
\end{array} \left\lvert\, \begin{array}{llllll}
10 & 10 & 10 & 10 & 10 & 10 \\
10 & 10 & 10 & 10 & 10 & 10
\end{array}\right.
\end{aligned}
\]
\begin{tabular}{rl}
\begin{tabular}{rl} 
Use of place value \\
discs to represent \\
the multiplication \\
process can be used
\end{tabular} & \(2 \times 568=1136\) \\
& \(10 \times 568=5680\) \\
\(2 \times 568\) & \(=1136\) \\
\hline \(12 \times 568\) & \(=6816\)
\end{tabular}
\begin{tabular}{|rrr|}
\hline & 1 & 1 \\
5 & 6 & 8 \\
\(\times\) & & 2 \\
\hline 1 & 1 & 3 \\
\hline
\end{tabular}

\section*{Multiplication}

\section*{Year 6}

Common multiples
\begin{tabular}{|c|c|c|}
\hline multiples of 3 & multiples of 4 & multiples of 6 \\
\hline 3 & 4 & 6 \\
\hline 6 & 8 & 12 \\
\hline 9 & 12 & 18 \\
\hline 12 & 16 & 24 \\
\hline 15 & 20 & 30 \\
\hline 18 & 24 & 36 \\
\hline 21 & 28 & 42 \\
\hline 24 & 32 & 48 \\
\hline 27 & 36 & 54 \\
\hline 30 & 40 & 60 \\
\hline 33 & 44 & 66 \\
\hline 36 & 48 & 72 \\
\hline
\end{tabular}

Find the common factors of 156 and 132.
\begin{tabular}{ll}
\(156=\overline{1} \times 156\) & \(132=\overline{1} \times 132\) \\
\(156=2 \times 78\) & \(132=2 \times 66\) \\
\(156=3 \times 52\) & \(132=3 \times 44\) \\
\(156=4 \times 39\) & \(132=1 \times 33\) \\
\(156=6 \times 26\) & \(132=6 \times 22\) \\
\(156=12 \times 13\) & \(132=11 \times 12\)
\end{tabular}

Common factors
\(1,2,3,4,6,12\) are all the common factors of 156 and 132 . So 12 is the largest common factor.

Find the factors of 5 .


Find the factors of 9.

\[
9=1 \times 9
\]

\[
9=3 \times 3
\]

The factors of 9 are 1, 3 and 9. 9 has more than 2 factors.

9 is not a prime number.
9 is a composite number.

\section*{Division}

\section*{Year 6}

\section*{Long division}
```


[^0]: $24+7=31$

